<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The three-page summary</td>
<td>p04</td>
</tr>
<tr>
<td>Executive summary</td>
<td>p08</td>
</tr>
<tr>
<td>Introduction</td>
<td>p32</td>
</tr>
<tr>
<td>High dynamic range</td>
<td>p50</td>
</tr>
<tr>
<td>LED BLU technologies</td>
<td>p57</td>
</tr>
<tr>
<td>MiniLED backlight units</td>
<td>p80</td>
</tr>
<tr>
<td>MiniLED BLU manufacturing</td>
<td>p108</td>
</tr>
<tr>
<td>MiniLED assembly</td>
<td>p114</td>
</tr>
<tr>
<td>MiniLED BLU applications and forecasts</td>
<td>p127</td>
</tr>
<tr>
<td>• TVs</td>
<td></td>
</tr>
<tr>
<td>• Smartphones</td>
<td></td>
</tr>
<tr>
<td>• Monitors</td>
<td></td>
</tr>
<tr>
<td>• Automotive displays</td>
<td></td>
</tr>
<tr>
<td>• Epiwafer forecasts</td>
<td></td>
</tr>
<tr>
<td>Conclusions on miniLED BLU</td>
<td>p156</td>
</tr>
<tr>
<td>Direct view LED displays</td>
<td>p158</td>
</tr>
<tr>
<td>Overview</td>
<td>p160</td>
</tr>
<tr>
<td>Market</td>
<td>p169</td>
</tr>
<tr>
<td>Narrow pitch displays</td>
<td>p175</td>
</tr>
<tr>
<td>Alternative display technologies</td>
<td>p215</td>
</tr>
<tr>
<td>LED epiwafer forecast</td>
<td>p226</td>
</tr>
<tr>
<td>TVs</td>
<td></td>
</tr>
<tr>
<td>Smartphones</td>
<td></td>
</tr>
<tr>
<td>Monitors</td>
<td></td>
</tr>
<tr>
<td>Automotive displays</td>
<td></td>
</tr>
<tr>
<td>Epiwafer forecasts</td>
<td></td>
</tr>
<tr>
<td>Annex A: LED display driving</td>
<td>p237</td>
</tr>
</tbody>
</table>
ACRONYMS

• AR: Augmented Reality
• BLU: Backlight Unit
• CapEx: Capital Expenditure
• CMOS: Complementary Metal Oxide Semiconductor
• EQE: External Quantum Efficiency
• FALD: Full Array Local Dimming
• FHD: Full High Definition (1920 x 1080)
• FOV: Field of View
• FWHM: Full Width at Half Maximum
• HD: High Definition
• HDR: High Dynamic Range
• HMD: Head-Mounted Display/Device
• HUD: Head-Up Display
• IC: Integrated Circuit
• IQE: Internal Quantum Efficiency
• KBD: Known Bad Die
• KGD: Known Good Die
• LCD: Liquid Crystal Display
• LCOS: Liquid Crystal on Silicon
• LED: Light-Emitting Diode
• LiGP: Light Guide Plate
• LLO: Laser Lift Off
• LTPS: Low-Temperature Polysilicon
• MEMS: Micro Electro-Mechanical Systems
• MOCVD: Metal-Oxide Chemical Vapor Deposition
• MR: Mixed Reality
• ODM: Original Design Manufacturer
• OEE: Optical Extraction Efficiency
• OEM: Original Equipment Manufacturer
• OLED: Organic Light-Emitting Diode
• PDMS: Polydimethylsiloxane (polymer material)
• PECVD: Plasma-Enhanced Chemical Vapor Deposition
• P&P: Pick and Place
• PPD: Pixel Per Degree
• PPI: Pixel Per Inch
• PPM: Parts Per Million
• QD: Quantum Dots
• QHD: Quad High Definition (2560 x 1400 to 3440 x 1440)
• TFT: Thin-Film Transistor
• VR: Virtual Reality
FROM THE LED TO THE MICROLED

• For microLED development, the technological challenges are such that it will be a few years before any products emerge.

• Because processes and applications are wildly different, miniLED development is not really a stepping stone to microLED development.

MiniLED was thought to be a stepping stone to microLED, but its processes and applications are completely different.
REPORT SCOPE

Traditional LEDs

Limit: ~150-200µm

Mini LEDs

Limit: ~50-100µm

MicroLEDs

Packaged: SMD, through hole
(smallest packages: 0.5 x 0.5 mm²)

SMD or chip-on-board assembly

Package-free: “chip-on-board” only

Applications

General and specialty lighting, LCD backlight units, LED videowalls

Low-pitch LED videowalls, LCD and keyboard backlights

Low-pitch LED videowalls, MicroLED displays (TV, smartphones, etc.)

Chips (to scale)

>1 mm

1 mm

200 µm

150 µm

100 µm

50 µm

30 µm

10 µm

2 µm

Packages (Not to scale)

Lumileds

Rohinni

Sony

X-Celeprint

Playnitride

Applications

General and specialty lighting, LCD backlight units, LED videowalls

Low-pitch LED videowalls, LCD and keyboard backlights

Low-pitch LED videowalls, MicroLED displays (TV, smartphones, etc.)
MiniLEDs have two main applications for which they compete against already-mature technologies.

- **Backlight units for LCD panels**
 - Main existing competition: **OLED**
 - (form factor, dynamic range)

- **Low-pitch LED videowalls**
 - Main existing competition: **LCD, Rear Projection Cubes**
 - (dynamic range, pitch)
LCD BACKLIGHT UNITS - EDGE AND DIRECT CONFIGURATIONS

Various LED backlight designs exist, depending on cost and performance targets.

<table>
<thead>
<tr>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge backlight</td>
</tr>
</tbody>
</table>

The choice of an LED BLU design results from the trade-off between cost, performance, and aesthetics (thickness).

<table>
<thead>
<tr>
<th>Description</th>
<th>Edge backlight</th>
<th>Direct backlight</th>
<th>Low-cost direct backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - 4 LED light bars positioned on the edges. Light is coupled into a light guide-plate.</td>
<td>Dense array of LEDs facing the viewer and coupled into a diffuser sheet</td>
<td>Low-density array of LEDs positioned further away to allow for light spread</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display thickness</th>
<th>Edge backlight</th>
<th>Direct backlight</th>
<th>Low-cost direct backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows very thin TV designs (< 2cm; as low as 5mm with glass light guide-plates)</td>
<td>Thicker design (2 - 5cm)</td>
<td>Much thicker (5 - 10cm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy efficiency</th>
<th>Edge backlight</th>
<th>Direct backlight</th>
<th>Low-cost direct backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Medium</td>
<td>Good</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrast/image quality</th>
<th>Edge backlight</th>
<th>Direct backlight</th>
<th>Low-cost direct backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate (Lateral dimming possible)</td>
<td>Excellent (Full-array local dimming possible)</td>
<td>Moderate (Full-array local dimming possible, but less precise and usually not implemented for cost reasons)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost</th>
<th>Edge backlight</th>
<th>Direct backlight</th>
<th>Low-cost direct backlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>High</td>
<td>Low / Medium</td>
<td></td>
</tr>
</tbody>
</table>
Quantum dots and narrow band phosphors enabled LCD with wide color gamut. For contrast, FALD was the first step and miniLEDs will be the next one towards reaching contrast levels close to OLED.
PRODUCT ANNOUNCEMENTS AND RUMORS

Number of miniLEDs per dimming zone, per panel size and application

- Analyzing 2017-2018 prototypes and product announcements shows no clear consensus on optimum number of LED per dimming zone as well.
- The number of zone is determined by image performance requirement (contrast) and the number of LED per zones is mostly determined by BLU thickness requirement.
- XXX miniLEDs per dimming zone is usually sufficient.
- The driving architecture is also important to consider: PM driving is not suitable for a higher number of zones.
 - Innolux showed a unique AM driven Automotive panel prototypes at CES and Touch Taiwan 2018. Thanks to the AM driving scheme, each LED correspond to a dimming zone. The technology is branded as “PixinLED.”
 - The highest number of miniLEDs per dimming zone appears to be 225 (TV presented by Nationstar at Touch Taiwan 2018, with 180,000 miniLEDs in 800 zones).
Driving choice is a matter of trade-offs on several parameters.

<table>
<thead>
<tr>
<th>Cost allocation decision for the BLU</th>
<th>Number of dimming zones and/or number of miniLEDs per zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
</tr>
</tbody>
</table>
DIFFUSER SHEETS

Lots of developments left in order to drive miniLED adoption

- Diffuser sheets use polymeric materials that are mechanically and thermally sensitive. Moreover, they must be optically sound in order to avoid “hot spots”, since the individual miniLEDs appear from the front as bright spots behind.

Due to the constraints on the diffuser sheet, reducing BLU thickness is not as easy as reducing the airgap.

Reducing OD, aka BLU thickness, by reducing the air gap may deform the diffuser sheet, thus impacting optics.
ASSEMBLY: OVERVIEW

- Cost and throughput vary significantly, depending on the desired placement accuracy and equipment quality.
- Entry-level die bonders for top emission die with ±25 µm accuracy can assemble up to \(XX \) unit per hour (UPH) and cost as little as $\$XXk$. Faster or higher-precision tools can cost up to $\$XXk$.
- Equipment choice depends on the application and process capability (die type, required placement accuracy, and bonding/interconnect type), as well as cost-of-ownership targets.
- For epoxy-based die bonding of top-emitter LEDs, a subsequent wire bonding step is required for electrical interconnect.

<table>
<thead>
<tr>
<th>$</th>
<th>Entry-level: $$XXk$ - $$XXk$</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Epoxy stamping/bonding</td>
<td></td>
</tr>
<tr>
<td>• ±25 µm placement accuracy</td>
<td></td>
</tr>
<tr>
<td>• Up to (XX)k UPH</td>
<td></td>
</tr>
<tr>
<td>• With top emitters, requires additional wire bonding steps for interconnect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$$</th>
<th>Mid-range: $$XXk$ - $$XXk$</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flip-chip</td>
<td></td>
</tr>
<tr>
<td>• Eutectic bonding</td>
<td></td>
</tr>
<tr>
<td>• ±25 µm placement accuracy</td>
<td></td>
</tr>
<tr>
<td>• Up to (XX)k - (XX)k UPH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$$$</th>
<th>High-end: $$XXk$ - $$XXk$</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flip-chip</td>
<td></td>
</tr>
<tr>
<td>• Eutectic or thermosonic compression bonding</td>
<td></td>
</tr>
<tr>
<td>• ±3 - ±10 µm placement accuracy</td>
<td></td>
</tr>
<tr>
<td>• Up to (XX)k UPH</td>
<td></td>
</tr>
</tbody>
</table>

Many types of tools, with a wide range of available prices and capabilities.
MINILED ATTRIBUTES VS. APPLICATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Smartphones</th>
<th>Monitors</th>
<th>TVs</th>
<th>Automotive displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Color gamut</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Brightness</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Contrast</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Long lifetime</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Flexible</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Overall attractiveness</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

1 - Not very important or differentiating
2 - Important
3 - Very important
4 - Critical
5 - Strong differentiator
MINILED ADOPTION IN TVS

- MiniLED BLU LCDs TV panels are expected to enter the market in 2019 (e.g.: Innolux).
- Given the price premium added to BLU manufacturing cost, prices will be steeper. The first implementations should appear on large-size panels, for which OLED struggles to compete with LCD.
- As yield and cost improve, miniLEDs could propagate towards smaller sizes, possibly down to 55". But cost-reduction options are limited, so this may not be impactful.
- Moreover, differentiation for the consumer will become unclear and other parameters will come into play, i.e. form factor, for which OLED prevails.
- Beyond 2022, microLED could steal some market share, especially for bigger screens.
Due to the auto industry's long qualification cycles, adoption will be delayed - but then soar.
Some commonly accepted industry jargon is used in this section:

Pixel pitch:

PX, where X characterizes the pixel pitch of a direct view LED display. For example, the term “P1.25” refers to a display with a pixel pitch of 1.25 mm (“0909” as well).

NPP (Narrow pixel pitch):

We chose to consider as NPP any display with a pixel pitch < 3 mm

LED package dimensions:

Surface-mount device (SMD) LED packages are often categorized based on their lateral dimension, rounded down to the nearest value in mm. For example, a “0909” package refers to an LED package with nominal lateral X and Y dimensions of 0.9 x 0.9 mm. However, a package with, say, a 0.98 x 0.98 mm size will also often be referred to as a “0909”.

Miniled for Display Applications: LCD and Digital Signage | Sample | www.yole.fr | ©2018
MAJOR APPLICATIONS

<table>
<thead>
<tr>
<th>Pitch: 50 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td></td>
<td>Airports, railway</td>
<td></td>
</tr>
<tr>
<td>Transportation & public information</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch: 5 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadside billboards, media facades</td>
<td></td>
<td>Retail: shopping malls</td>
<td></td>
</tr>
<tr>
<td>Commercial and retail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch: 0.5 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail: in-store</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial and retail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch: 5 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerts, musicals</td>
<td></td>
<td>Cinema</td>
<td></td>
</tr>
<tr>
<td>Sports & Entertainment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch: 0.5 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command & control rooms</td>
<td></td>
<td>Corporate lobbies, hospitality, healthcare</td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch: 0.5 mm</th>
<th>Outdoor</th>
<th>Overlap Outdoor/Indoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houses of worship</td>
<td></td>
<td>Residential: high-end home theatre systems</td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1]: Energy utility, logistic, market exchanges, police/military situation rooms, traffic monitoring, etc.
After peaking at close to 100, there are still more than 30 active LED chip manufacturers. However, the market for display applications is increasingly dominated by strong leaders in China and Taiwan such as San’an, Epistar, Changelight, HC Semitek, ETI, Aucksun etc.

Similarly, there are still 100+ LED packaging companies, but the market for direct-view LED display applications is increasingly dominated by a handful of firms.

Due to low entry barriers for entry-level products, there are hundreds of LED display makers[1]. However, the top 10 hold around XX% of market value.

[1] > XXX in China only!
The narrow pixel-pitch segment is growing much faster than larger pitches.
DIRECT VIEW SMD LED DISPLAYS - COST STRUCTURE

- For an NPP display, LED packages typically represent XX-XX% of the BOM and > XX% of the display’s total cost.
- The number of RGB LED packages per unit display surface increases with the inverse square of the pitch: reduce pitch 2x → increase LED count 4x.
 - A 2 mm-pitch display has 250,000 LED per m²
 - A 1 mm-pitch display has 1,000,000 LED per m²
- The number of drivers increases following the same rule (drivers typically have 16 - 48 channels with 8 - 32 multiplexing capability, allowing for control of up to 512 RGB pixels)

LED packages are the single-largest contributor to a direct view display’s bill of materials (BOM).
DIRECT VIEW LED DISPLAYS - COST DRIVERS

- The cost structure changes for the most extreme pitches (very low or very high), since some of the cost contributors (i.e. cabinets) remain relatively independent of pitch.

- As a result, a full display's per-pixel cost tends to increase for the largest pitches (i.e. small pixel density) as the relative contribution of these “fixed costs” increases. Large-pitch displays also have more stringent requirements in terms of ruggedness, and high-brightness installations require higher-power packages.

For a given pitch, price can vary more than 2x depending on quality, volume, and supplier. The graphs on this slide represent the overall market's average selling price estimates.
LED TECHNOLOGIES FOR DIRECT VIEW DISPLAYS

Pixel pitch

Outdoor

Indoor

0.5 mm

< 1 mm

< 3 mm

10 mm

1997

2006

2016-2018

Through-hole individual R, G, B LED
High pitch

SMD[1] LED
R,G,B chips on a single surface-mount package. Shifted the color balance responsibility to the LED packagers and opened the door to smaller pitch and lower cost (use of fast P&P and SMD soldering machines)

COB[2] LED
Package-free LED chips mounted directly on the electric board substrate. Theoretically enables smaller pitch than SMD (<0.7 mm) and reduces LED cost.

“Four-in-One” COB SMD packages
Compact SMD packages featuring 4x RGB LEDs

Package-free, very small LED chips mounted directly on the electric board substrate. Could further reduce the pitch (<0.5 mm) and bring other benefits (cost, contrast, etc.)

Small and smaller packages: 0505 enables 0.7 mm pitch

[1]: Surface-mount device (SMD)
[2]: SMD LED types are often described by four digits, corresponding to their lateral dimensions: i.e. a “0606” LED package is typically 0.6 x 0.6 mm in size
[3]: Chip-on-board LED
• Standard InGaAlP chips are typically XX - XX% more expensive than green or blue GaN-based chips

• For flip-chip, the gap increases dramatically with red FC die: up to XX - XXXx more expensive than blue or green FC. However, this gap has slimmmed down from XX - XXXx only a few years back.

• For this reason, Sony's Crystal LED display XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX

• Due to strong demand and the market potential driven by NPP LED displays and microLED displays, chip manufacturers are continuously improving their red FC design and investing in equipment to ramp-up production

• Red FC cost is therefore decreasing rapidly, although it is expected that, due to the intrinsically more complex manufacturing process, a cost gap with GaN-based FC LED will remain

Flip Chip structures are emerging for red die but remain expensive (typically about XX to XXXx more than blue or green).

COB POTENTIAL BENEFITS

Lower pitch:
No package → enables higher packing density

Better performance:
Contrast: Low LED emitter occupancy limits ambient light reflection on chips/package (example next slide)
Viewing angle: wider emission angle of chips vs. package

Reliability/ruggedness /reduced maintenance:
Improved thermal management, easy encapsulation (SMD easily knocked off the board)
Some players claim ½ to 1/10 pixel defect rates on COB NPP, compared to SMD

Transparent displays:
Alternative to assembly on a black-coated PCB, the chips can be mounted on a transparent substrate (i.e. glass).
The low chip occupancy then enables display with high transparency.

Flexible displays:
Small size/low occupancy. Can also increase flexibility and robustness if assembled on a flexible substrate
(thin glass, polymer, etc.).

Lower cost:
Eliminating the package could potentially reduce LED cost by half
MINILED AND MICROLED

- MiniLED and microLED are usually distinguished by their size (< 50 µm) and structure:
 - miniLED are small-size FC LED structures with a native sapphire substrate (blue and green LED) thinned down but remaining in the structure
 - microLED are much smaller vertical or horizontal chips from which the native substrate has been removed

<table>
<thead>
<tr>
<th></th>
<th>MiniLED</th>
<th>MicroLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>50 - 200 µm</td>
<td>2 - 50 µm</td>
</tr>
<tr>
<td>Die structure</td>
<td>FC, native epitaxial substrate remains on structure</td>
<td>Vertical or horizontal FC. Growth substrate is removed.</td>
</tr>
<tr>
<td>Die singulation methods</td>
<td>Laser scribing (typical street width: XX µm)</td>
<td>Plasma etching (typical street width: XX - X µm)</td>
</tr>
<tr>
<td>Die assembly method</td>
<td>Can be handled by standard pick-and-place die bonders, high semi-continuous printing (flexographic, R2R), self-assembly</td>
<td>Requires innovative technologies and equipment not yet commercially available (massively parallel P&P, semi-continuous printing, laser transfer)</td>
</tr>
</tbody>
</table>

Major characteristics of mini and microLED

picture: ITRI at SID 2018
NARROW PIXEL-PITCH LED DISPLAY - TECHNOLOGY ROADMAP
EMERGING APPLICATIONS: LED DIGITAL CINEMA

- Our forecast exclude a potentially significant opportunity for direct view display: in 2017, Samsung unveiled the first LED cinema screen under the brand “Onyx”. As of Q3-2018, the displays have been installed at a dozen theatre multiplexes in Korea, Thailand, Malaysia, Hong Kong, China, India, Switzerland, Germany, Austria, Mexico and the US.

- The screens are built from P2.5 mm modules of 256 × 360 pixels to satisfy both flat (1.85:1 aspect ratio) 3,996x2,160 pixel and and cinemascope (2.35:1 aspect ratio) 4,096 × 1,716 pixels delivering up to 500 nits brightness.

- Sony followed suit in 2018 and started pitching its CLED technology for cinema applications.

![Samsung’s “Onyx” LED Cinema Display](source: Samsung)
![Samsung’s “Onyx” LED Cinema Display module](source: Samsung)

The typical pixel pitch in traditional digital cinema is in the P2 to P5 mm range: well within the realm of LED displays.
We remain conservative on the LED cinema opportunity at this stage and see it more as a high end niche similar to Dolby Cinema or Imax.
The excitement about microLEDs has grown exponentially since Apple acquired technology startup Luxvue in 2014. All major display makers have now invested in the technology and other semiconductor or hardware companies such as Intel, Facebook Oculus or Google have joined the pool.

Amidst this flurry of news and activity, a new term emerged in early 2017: miniLED. The technology is often described as a stepping stone, bridging the technology and application gap between traditional LEDs and microLEDs. However, there is no commonly accepted definition of either term. As the names suggest, size is a critical aspect. Building on a consensus from the many companies surveyed, microLEDs are typical below 50µm along their sides, although the bulk of the activity is skewed toward the smaller dimensions, typically in the 3-15µm range. By default, miniLEDs fill the size gap between microLEDs and traditional LEDs. But more than size, the technology and manufacturing infrastructure requirements and the applications differentiate the two. While microLEDs require major technology breakthroughs in assembly and die structure, as well as a significant overhaul of the manufacturing infrastructure, miniLED chips are just scaled-down traditional LEDs. They can be manufactured in existing fabs with no or little additional investment.

On the application side, microLEDs’ promise lays in the realization of disruptive, high pixel density self-emissive displays, while miniLEDs can be used to upgrade existing Liquid Crystal Displays (LCDs) with ultra-thin, multi-zone local dimming backlight units (BLU) that enable form factors and contrast performance close to or better than Organic Light Emitting Diodes (OLEDs). On the business-to-business side, miniLEDs are promising for the realization of cost-effective, narrow pixel pitch LED direct view displays used in digital signage applications such as in retail, corporate and control room applications.

The report discusses the different chip structures considered for the various applications.

MINILED ADOPTION IS FIRST DRIVEN BY HIGH-END LCD DISPLAYS

For smartphone applications, miniLEDs are facing a strong incumbent in OLEDs, as their cost to performance ratio has already gained the technology a strong position in high-end/flagship segments. OLED is expected to further increase its share and become dominant as the number of suppliers and global capacity increase dramatically over the next five years and cost continues to drop.
MiniLEDs, however, have a card to play in various small to mid-size high added-value display segments, where OLEDs have been less efficient at overcoming its weaknesses such as cost, lack of availability and longevity issues such as burn-in or image retention. In tablets, laptops and high-end monitors for gaming applications, miniLEDs could bring excellent contrast, high brightness and thin form factors at lower cost than OLEDs. The automotive segment is especially compelling, first because of its strong growth potential in terms of volume and revenue, and also because miniLEDs can deliver on every aspect auto-makers are aspiring to: very high contrast and brightness, lifetime, conformability to curved surfaces and ruggedness. Regarding the last point on ruggedness, miniLED offers significant benefits over OLEDs since they only use proven technologies, LED backlights and liquid crystal cells, not much different from already established LCDs. Automakers therefore don’t have to make a leap of faith and hope the new technology will meet the demanding lifetime, environmental and operating temperature specifications they require.

On the TV side, miniLEDs could help LCDs bridge the gap and regain market share against OLEDs on the high-end, large sizes above 65”, and most profitable segments. This opportunity is all the more enticing to panel and display makers that have not invested in OLED technologies and see the potential to extend the lifetime and profitability of their LCD fabs and technologies.

For direct view LED displays, miniLEDs used in conjunction with Chip On Board (COB) architecture could enable higher penetration of narrow pixel pitch LED displays in multiple applications, hence increasing the serviceable market. Die size will evolve continuously toward smaller dimensions, possibly down to 30-50µm in order to reduce cost. Adoption in cinema is still highly uncertain but even modest adoption rates would generate very significant upsides.

The report provides detailed adoption and volume forecasts for each application.
Harvatek or Nationstar’s new “4-in-1” Surface Mount Device (SMD) packages allow LED direct view display makers to alleviate a critical obstacle for miniLED adoption: the need to retool and transition from an SMD to a direct die bonding assembly philosophy.

MiniLEDs should benefit chip makers by increasing their available market. Some are trying to cash in on the opportunity and move up the supply chain by offering miniLED packages and/or BLU modules. For example, Epistar is spinning off but keeping control of its miniLED activities.

A remaining question is how fast equipment makers will develop new generation of miniLED-specific assembly tools that will help speed up adoption by reducing manufacturing costs. Key attributes for such tools are much higher throughput and the ability to handle smaller dies, 100µm or smaller. Various routes are investigated, including upgrade of traditional die assembly technology or more disruptive processes inspired from the vast body of work and technologies being developed for microLEDs. The first to market is Kulicke & Soffa which recently introduced a tool co-developed with startup Rohinni.

The availability of tools capable of efficiently handling smaller dies will in turn enable LCD and LED direct view display makers to further reduce cost by reducing the die size to the smallest level required for each individual applications.

Ultimately, for most of the targeted segments, miniLEDs offer performance close to the incumbent technologies like OLED for high-end consumer displays and SMD LEDs for narrow pitch digital signage. Cost will therefore be a major driver or showstopper for adoption.

The report discusses the major cost contributors and cost-down paths.

COMPANIES CITED IN THE REPORT (non exhaustive list)

TABLE OF CONTENTS (complete content on i-Micronews.com)
The three-page summary 04
Executive summary 08
Introduction 32
High dynamic range 50
LED BLU technologies 57
MiniLED backlight units 80
MiniLED BLU manufacturing 108
MiniLED assembly 114
MiniLED BLU applications and forecasts 127
> TVs
> Smartphones
> Monitors
> Automotive displays
> Epitaxial forecasts
Conclusions on miniLED BLU 156
Direct view LED displays 158
Overview 160
Market 169
Narrow pitch displays 175
Alternative display technologies 215
LED epitaxial forecast 226
Annex A: LED display driving 237
Annex B: LED for digital cinema 243

RELATED REPORTS
Benefit from our Bundle & Annual Subscription offers and access our analyses at the best available price and with great advantages

- MicroLED Displays: Intellectual Property Landscape
- Quantum Dots and Wide Color Gamut Display Technologies
- Displays & Optical Vision Systems for VR, AR & MR 2018

Find all our reports on www.i-micronews.com
ORDER FORM

MiniLED for Display Applications: LCD and Digital Signage

BILL TO

Name (Mr/Ms/Dr/Pr):
Job Title:
Company:
Address:
City:
State:
Postcode/Zip:
Country:
*VAT ID Number for EU members:
Tel:
Email:
Date:

PAYMENT

BY CREDIT CARD

○ Visa ○ Mastercard ○ Amex

Name of the Card Holder:
Credit Card Number:
Card Verification Value (3 digits except AMEX: 4 digits):
Expiration date:

BY BANK TRANSFER

BANK INFO: HSBC, 1 place de la Bourse, F-69002 Lyon, France,
Bank code: 30056, Branch code: 00170
Account No: 0170 200 1565 87,
SWIFT or BIC code: CCFRFRPP,
IBAN: FR76 3005 6001 7001 7020 0156 587

RETURN ORDER BY

• MAIL: YOLE DÉVELOPPEMENT, Le Quartz, 75 Cours Emile Zola, 69100 Villeurbanne/Lyon - France

SALES CONTACTS

• Western US & Canada - Steve Laferriere:
 +1 310 600-8267 – laferriere@yole.fr
• Eastern US & Canada - Troy Blanchette:
 +1 704 859 0453 – troy.blanchette@yole.fr
• Europe & RoW - Lizzie Levenez:
 + 49 15 123 544 182 – levenez@yole.fr
• Japan & Rest of Asia - Takashi Onozawa:
 +81-80-4371-4887 – onozawa@yole.fr
• Greater China - Mavis Wang:
 +886 979 336 809 – wang@yole.fr
• Specific inquiries: +33 472 830 180 – info@yole.fr

(*) Our Terms and Conditions of Sale are available at www.yole.fr/Terms_and_Conditions_of_Sale.aspx
The present document is valid 24 months after its publishing date: October 25, 2018

PRODUCT ORDER - Ref YD18042

Please enter my order for above named report:

☐ One user license*: Euro 5,990
☐ Multi user license: Euro 6,490

- The report will be ready for delivery from November 7, 2018
- For price in dollars, please use the day’s exchange rate. All reports are delivered electronically at payment reception. For French customers, add 20% for VAT

I hereby accept Yole Développement’s Terms and Conditions of Sale(*)
Signature:

*One user license means only one person at the company can use the report.

SHIPPING CONTACT

First Name: ___________________________ Last Name: ___________________________ Phone: ___________________________
Email: ___________________________

ABOUT YOLE DEVELOPPEMENT

Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services, reverse engineering and reverse costing services and well as IP and patent analysis. With a strong focus on emerging applications using silicon and/or micro manufacturing, the Yole group of companies has expanded to include more than 80 collaborators worldwide covering MEMS and image sensors, Compound Semiconductors, RF Electronics, Solid-state lighting, Displays, Software, Optoelectronics, Microfluidics & Medical, Advanced Packaging, Manufacturing, Nanomaterials, Power Electronics and Batteries & Energy Management.

The “More than Moore” market research, technology and strategy consulting company Yole Développement, along with its partners System Plus Consulting, PISEO and KnowMade, support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to grow their business.

CONSULTING AND ANALYSIS

• Market data & research, marketing analysis
• Technology analysis
• Strategy consulting
• Reverse engineering & costing
• Patent analysis
• Design and characterization of innovative optical systems
• Financial services (due diligence, M&A with our partner)

More information on www.yole.fr

MEDIA & EVENTS

• i-Micronews.com website & related @Micronews e-newsletter
• Communication & webcast services
• Events: TechDays, forums…

More information on www.i-micronews.com

REPORTS

• Market & technology reports
• Patent investigation and patent infringement risk analysis
• Tear downs & reverse costing analysis
• Cost simulation tool

More information on www.i-micronews.com/reports

CONTACTS

For more information about:
• Consulting & Financial Services: Jean-Christophe Eloy (eloy@yole.fr)
• Reports: David Jourdan (jourdan@yole.fr) Yole Group of Companies
• Press Relations & Corporate Communication: Sandrine Leroy (leroy@yole.fr)
Yole Développement

From Technologies to Market
YOLE DEVELOPPEMENT – 4 DIVISIONS

Life Sciences & Healthcare
- Microfluidic
- BioMEMS
- Inkjet Printing
- Solid-State Medical Imaging & BioPhotonics
- Bio Technologies

Power & Wireless
- RF Devices & Technology
- Compound Semiconductors & Emerging Materials
- Power Electronics
- Batteries & Energy Management

Semiconductor & Software
- Package & Assembly & Substrates
- Semiconductor Manufacturing
- Memory
- Software & Computing

Photonics, Sensing & Display
- Solid-State Lighting & Display
- MEMS, Sensors & Actuators
- Imaging
- Photonics & Optoelectronics
4 BUSINESS MODELS

- **Consulting and Analysis**
 - Market data & research, marketing analysis
 - Technology analysis
 - Strategy consulting
 - Reverse engineering & costing
 - Patent analysis
 - Design and characterization of innovative optical systems
 - Financial services (due diligence, M&A with our partner)

- ** Syndicated reports**
 - Market & technology reports
 - Patent investigation and patent infringement risk analysis
 - Teardowns & reverse costing analysis
 - Cost simulation tool

- ** Monitors**
 - Monthly and/or Quarterly update
 - Excel database covering supply, demand, and technology
 - Price, market, demand and production forecasts
 - Supplier market shares

- ** Media**
 - i-Micronews.com website
 - @Micronews e-newsletter
 - Communication & webcast services
 - Events: TechDays, forums, …
6 COMPANIES TO SERVE YOUR BUSINESS

Yole Group of Companies

Yole Développement
Market, technology and strategy consulting
www.yole.fr

SystemPlus Consulting
Manufacturing costs analysis
Teardown and reverse engineering
Cost simulation tools
www.systemplus.fr

KnowMade
IP analysis
Patent assessment
www.knowmade.fr

Piseo
Design and characterization of innovative optical systems
www.piseo.fr

Blumorpho
Innovation and business maker
www.blumorpho.com

Due diligence
www.yole.fr
OUR GLOBAL ACTIVITY

- **40%** of our business
 - Europe office
 - Paris
 - Nantes
 - Vénissieux

- **30%** of our business
 - Yole Inc.
 - Phoenix
 - Tokyo
 - Hsinchu

- **30%** of our business
 - Greater China office

HQ in Lyon

Nantes

Nice

Paris

Frankfurt

Yole Japan

Yole Korea

Yole Inc.
ANALYSIS SERVICES - CONTENT COMPARISON

- Technology and Market Report
- Leadership Meeting
- Q&A Service
- Meet the Analyst
- Custom Analysis

Depth of the analysis

Breadth of the analysis

High
Low

©2018 | www.yole.fr | About Yole Développement
SERVING THE ENTIRE SUPPLY CHAIN

Our analysts provide market analysis, technology evaluation, and business plans along the entire supply chain.

Integrators, end-users and software developers

Device manufacturers

Suppliers: material, equipment, OSAT, foundries...

Financial investors, R&D centers
SERVING MULTIPLE INDUSTRIAL FIELDS

We work across multiples industries to understand the impact of More-than-Moore technologies from device to system

From A to Z…

- Industrial and defense
- Medical systems
- Energy management
- Automotive
- Transportation makers
- Mobile phone and consumer electronics

©2018 | www.yole.fr | About Yole Développement
Yole Développement, System Plus Consulting, KnowMade and PISEO, all part of Yole Group of Companies, keep on increasing their collaboration to offer, in 2018, a collection of 150+ reports. Combining respective expertise and methodologies from the 4 companies, the reports aim to provide market & technology analysis, patent investigation and patent infringement risk analysis, teardowns & reverse costing analysis. They cover:

- MEMS & Sensors
- RF devices & technologies
- Imaging
- Medical technologies (MedTech)
- Photonics
- Advanced packaging
- Manufacturing
- Advanced substrates
- Power electronics
- Batteries and energy management
- Compound semiconductors
- Solid state lighting
- Displays
- Software
- Memory

You are looking for:

- An analysis of your product market
- A review of your competitors evolution
- An understanding of your manufacturing and production costs
- An understanding of your industry technology roadmap and related IPs
- A clear view on the evolution of the supply chain…

Our reports are for you!

The combined team of 60+ experts (PhDs, MBAs, industry veterans…) from Yole Développement, System Plus Consulting, KnowMade and PISEO, collect information, identify the trends, the challenges, the emerging markets, the competitive environments and turn it into results to give you a complete picture of your industry landscape.

In the past 20 years, we worked on more than 1 700 projects, interacting with technology professionals and high level opinion makers from the main players of the industry.

In 2018, Yole Group of Companies plan to publish +150 reports. Gain full benefit from our Bundled Offer and receive at least a 36% discount.
OUR 2018 REPORTS COLLECTION (1/4)

MEMS & SENSORS
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Status of the MEMS Industry 2018 – Update
 - Silicon Photonics 2018 – Update
 - Consumer Biometrics: Hardware & Software 2018 – Update
 - Inkjet Functional and Additive Manufacturing for Electronics 2018
 - Fingerprint Sensor Applications and Technologies – Consumer Market Focus 2017
 - Sensors and Sensing Modules for Smart Homes and Buildings 2017
 - Acoustic MEMS and Audio Solutions 2017
 - MEMS & Sensors for Automotive Market & Technology Trends 2017
 - High End Inertial Sensors 2017
 - Magnetic Sensor 2017
- **REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT** – by System Plus Consulting
 - Piezo MEMS 2018
- **PATENT ANALYSES** – by KnowMade
 - MEMS Microphone – Patent Landscape Analysis
 - Knowles MEMS Microphones in Apple iPhone 7 Plus – Patent-to-Product Mapping 2017
- **LINKED REPORTS** – by Yole Développement, System Plus Consulting and KnowMade
 - MEMS Pressure Sensor 2018 – Market & Technology Report
 - Gas & Particles 2018 – Market & Technology Report
 - LiDARs for Automotive and Industrial Applications 2018 – Market & Technology Report
 - LiDAR for Automotive 2018 – Patent Landscape Analysis
 - MEMS Packaging 2017 – Market & Technology Report

RF DEVICES AND TECHNOLOGIES
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Wireless technologies (Radar, V2X) for Automotive 2018
 - RF Standards and Technologies for Connected Objects 2018
 - RF & Photonic Components & Technologies for 5G Infrastructure 2018
- **REVERSE COSTING® – STRUCTURE, PROCESS & COST REPORT** – by System Plus Consulting
 - Automotive Radar Comparison 2018
- **PATENT ANALYSES** – by KnowMade
 - RF Acoustic Wave Filters 2017 – Patent Landscape Analysis
- **LINKED REPORTS** – by Yole Développement, System Plus Consulting and KnowMade
 - 5G impact on RF Front End Modules and Connectivity for Cellphones 2018 – Market & Technology Report – Update
 - RF Front End Modules for Cellphones 2018 – Patent Landscape Analysis
 - RF GaN 2018 – Patent Landscape Analysis

SOFTWARE
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Consumer Biometrics: Sensors & Software 2018 – Update
 - Processing Hardware and Software for AI 2018 – Vol. 1 & 2
 - From Image Processing to Deep Learning, Introduction to Hardware and Software

Update : 2017 version still available / *To be confirmed
OUR 2018 REPORTS COLLECTION (2/4)

IMAGING & OPTOELECTRONICS

- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Status of the Compact Camera Module and Wafer Level Optics
 - Industry 2018 – Update
 - 3D Imaging and Sensing 2018 – Update
 - Sensors for Robotic Vehicles 2018
 - Machine Vision for Industry and Automation 2018
 - Imagers and Detectors for Security and Smart Buildings 2018
 - Uncooled Infrared Imagers 2017
- **PATENT ANALYSES** – by KnowMade
 - iPhone X Dot Projector – Patent-to-Product Mapping
- **LINKED REPORTS** – by Yole Développement, System Plus Consulting and KnowMade
 - Status of the CMOS Image Sensor Industry 2018 – Market & Technology Report - Update
 - CMOS Image Sensors Monitor 2018* – Quarterly Update**
 - Camera Module 2017 – Market & Technology Report
 - LiDARs for Automotive and Industrial Applications 2018 – Market & Technology Report
 - LiDAR for Automotive 2018 – Patent Landscape Analysis

ADVANCED PACKAGING

- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Status of Advanced Packaging Industry 2018 – Update
 - Status of Advanced Substrates 2018: Embedded Die and Interconnects, Substrate Like PCB Trends
 - 3D TSV and Monolithic Business Update 2018 – Update
 - Power Modules Packaging 2018 – Update
 - Discrete Power Packaging 2018 – Update*
- **PATENT ANALYSES** – by KnowMade
 - Hybrid Bonding for 3D Stack – Patent Landscape Analysis
- **LINKED REPORTS** – by Yole Développement and System Plus Consulting
 - Advanced RF System-in-Package for Cellphones 2018 – Market & Technology Report - Update*
 - Fan-Out Packaging 2018 – Market & Technology Report – Update*

MANUFACTURING

- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Wafer Starts for More Than Moore Applications 2018
 - Equipment for More than Moore: Technology & Market Trends for Lithography & Bonding/Debonding 2018
 - Polymeric Materials for wafer-level Advanced Packaging 2018
 - Laser Technologies for Semiconductor Manufacturing 2017
 - Glass Substrate Manufacturing in the Semiconductor Field 2017
 - Equipment and Materials for Fan-Out Packaging 2017
 - Equipment and Materials for 3D TSV Applications 2017
- **LINKED REPORTS** – by Yole Développement and System Plus Consulting

Update : 2017 version still available / *To be confirmed
OUR 2018 REPORTS COLLECTION (3/4)

MEMORY
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Emerging Non Volatile Memory 2018 – Update
 - Memory Packaging Market and Technology Report 2018 – Update*
- **QUARTERLY UPDATE** – by Yole Développement**
 - Memory Market Monitor 2018 (NAND & DRAM)
- **MONTHLY UPDATE** – by Yole Développement**
 - Memory Pricing Monitor 2018 (NAND & DRAM)
- **REVERSE ENGINEERING & COSTING REVIEW** – by System Plus Consulting
 - DRAM Technology & Cost Review 2018
 - NAND Memory Technology & Cost Review 2018
- **PATENT ANALYSES** – by KnowMade
 - 3D Non-Volatile Memories – Patent Landscape

COMPONENT SEMICONDUCTORS
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Status of Compound Semiconductor Industry 2018*
 - GaAs Materials, Devices and Applications 2018
 - InP Materials, Devices and Applications 2018
 - Bulk GaN Substrate Market 2017
- **LINKED REPORTS** – by Yole Développement, System Plus Consulting and KnowMade
 - SiC Transistor Comparison 2018 – Structure, Process & Cost Report
 - Power SiC 2018 – Patent Landscape Analysis
 - GaN-on-Silicon Transistor Comparison 2018 – Structure, Process & Cost Report

POWER ELECTRONICS
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Status of Power Electronics Industry 2018 – Update
 - Discrete Power Packaging 2018 – Update*
 - Power Electronics for Electric Vehicles 2018 – Update
 - Integrated Passive Devices (IPD) 2018
 - Wireless Charging Market Expectations and Technology Trends 2018
 - Thermal Management Technology and Market Perspectives in Power
 - Electronics and LEDs 2017
 - Gate Driver 2017
 - Power MOSFET 2017
 - IGBT 2017
 - Market Opportunities for Thermal Management Components in Smartphones 2017
- **LINKED REPORTS** – by Yole Développement, System Plus Consulting and KnowMade
 - Power Modules Packaging 2018 – Market & Technology Report – Update
 - Power ICs Market Monitor 2018 – Quarterly Update**

BATTERY AND ENERGY MANAGEMENT
- **MARKET AND TECHNOLOGY REPORT** – by Yole Développement
 - Li-ion Battery Packs for Automotive and Stationary Storage Applications 2018 – Update
- **PATENT ANALYSES** – by KnowMade
- **LINKED REPORTS** – by Yole Développement and KnowMade
 - Solid State Electrolyte Battery 2018 – Market & Technology Report
 - Solid-State Batteries 2018 – Patent Landscape Analysis
SOLID STATE LIGHTING

- MARKET AND TECHNOLOGY REPORT – by Yole Développement
 - LiFi: Technology, Industry and Market Trends
 - LED Lighting Module Technology, Industry and Market Trends 2017
 - CSP LED Lighting Modules
 - Phosphors & Quantum Dots 2017 - LED Downconverters for Lighting & Displays
 - Horticultural Lighting 2017

- LINKED REPORTS – by Yole Développement and System Plus Consulting
 - VCSELs Comparison 2018 – Structure, Process & Cost Report

DISPLAYS

- MARKET AND TECHNOLOGY REPORT – by Yole Développement
 - Quantum Dots and Wide Color Gamut Display Technologies 2018 – Update
 - Displays and Optical Vision Systems for VR/AR/MR 2018

- PATENT ANALYSES – by KnowMade
 - MicroLED Display – Patent Landscape Analysis

MEDTECH

- MARKET AND TECHNOLOGY REPORT – by Yole Développement
 - BioMEMS & Non Invasive Emerging Biosensors: Microsystems for Medical
 - Applications 2018 – Update

- Point-of-Need Testing Application of Microfluidic Technologies 2018 – Update
- Neurotechnologies and Brain Computer Interface 2018
- CRISPR-Cas9 Technology: From Lab to Industries 2018
- Ultrasound Technologies for Medical, Industrial and Consumer Applications 2018
- Inkjet Functional and Additive Manufacturing for Electronics 2018
- Liquid Biopsy: from Isolation to Downstream Applications 2018
- Chinese Microfluidics Industry 2018
- Scientific Cameras for the Life Sciences & Analytical Instrumentation Laboratory Markets 2018*
- Artificial Organ Technology and Market 2017
- Connected Medical Devices Market and Business Models 2017
- Status of the Microfluidics Industry 2017
- Organs-On-Chips 2017
- Solid-State Medical Imaging 2017
- Medical Robotics Market & Technology Analysis 2017

- PATENT ANALYSES – by KnowMade
 - Microfluidic IC Cooling – Patent Landscape
 - Circulating Tumor Cell Isolation – Patent Landscape
 - OCT Medical Imaging – Patent Landscape
 - Pumps for Microfluidic Devices – Patent Landscape 2017
 - Microfluidic Technologies for Diagnostic Applications – Patent Landscape 2017
 - FLUIDIGM – Patent Portfolio Analysis 2017

- LINKED REPORTS – by Yole Développement, System Plus Consulting and KnowMade
 - Organs-On-Chips 2017 – Market & Technology Report
 - Organ-on-a-Chip – Patent Landscape Analysis

Update: 2017 version still available / *To be confirmed
OUR 2017 PUBLISHED REPORTS LIST (3/3)

OUR PARTNERS' REPORTS

PATENT ANALYSES – by KnowMade
- Wireless Charging Patent Landscape Analysis
- RF Acoustic Wave Filters Patent Landscape Analysis
- NMC Lithium-Ion Batteries Patent Landscape Analysis
- Pumps for Microfluidic Devices Patent Landscape
- III-N Patent Watch
- FLUIDIGM Patent Portfolio Analysis
- Knowles MEMS Microphones in Apple iPhone 7 Plus Patent-to-Product Mapping 2017
- Consumer Physics SCiO Molecular Sensor Patent-to-Product Mapping
- Patent Licensing Companies in the Semiconductor Market - Patent Litigation Risk and Potential Targets
- Microfluidic Technologies for Diagnostic Applications Patent Landscape

TEARDOWN & REVERSE COSTING – by System Plus Consulting
More than 60 teardowns and reverse costing analysis and cost simulation tools published in 2017

MORE INFORMATION
- All the published reports from the Yole Group of Companies are available on our website www.i-Micronews.com.
- Ask for our Bundle Subscription offers: With our bundle offer, you choose the number of reports you are interested in and select the related offer. You then have up to 12 months to select the required reports from the Yole Développement, System Plus Consulting and KnowMade offering. Pay once and receive the reports automatically (multi-user format). Contact your sales team according to your location (see the last slide).
About Micronews Media

To meet the growing demand for market, technological and business information, Micronews Media integrates several tools able to reach each individual contact within its network. We will ensure you benefit from this.

ONLINE

@Micronews e-newsletter
i-Micronews.com
i-Micronews.jp.com
FreeFullPDF.com

Unique, cost-effective ways to reach global audiences.
Online display advertising campaigns are great strategies for improving your product/brand visibility. They are also an efficient way to adapt with the demands of the times and to evolve an effective marketing plan and strategy.

ONSITE

Events

Brand visibility, networking opportunities
Today’s technology makes it easy for us to communicate regularly, quickly, and inexpensively – but when understanding each other is critical, there is no substitute for meeting in-person. Events are the best way to exchange ideas with your customers, partners, prospects while increasing your brand/product visibility.

INPERSON

Webcasts

Targeted audience involvement equals clear, concise perception of your company’s message. Webcasts are a smart, innovative way of communicating to a wider targeted audience. Webcasts create very useful, dynamic reference material for attendees and also for absentees, thanks to the recording technology.

Benefit from the i-Micronews.com traffic generated by the 11,200+ monthly unique visitors, the 10,500+ weekly readers of @Micronews e-newsletter
Several key events planned for 2018 on different topics to attract 120 attendees on average
Gain new leads for your business from an average of 340 registrants per webcast

Contact: Camille Veyrier (veyrier@yole.fr), Marketing & Communication Project Manager
CONTACT INFORMATION

○ CONSULTING AND SPECIFIC ANALYSIS, REPORT BUSINESS

• North America:
 • Steve LaFerriere, Senior Sales Director for Western US & Canada
 Email: laferriere@yole.fr – + 1 310 600-8267
 • Troy Blanchette, Senior Sales Director for Eastern US & Canada
 Email: troy.blanchette@yole.fr – +1 704 859-0453

• Japan & Rest of Asia:
 • Takashi Onozawa, General Manager, Asia Business Development (India & ROA)
 Email: onozawa@yole.fr - +81 34405-9204
 • Miho Othake, Account Manager (Japan)
 Email: ohtake@yole.fr - +81 3 4405 9204
 • Itsuyo Oshiba, Account Manager (Korea & Singapore)
 Email: oshiba@yole.fr - +81-80-3577-3042

• Greater China: Mavis Wang, Director of Greater China Business Development
 Email: wang@yole.fr - +886 979 336 809

• Europe: Lizzie Levenez, EMEA Business Development Manager
 Email: levenez@yole.fr - +49 15 123 544 182

• RoW: Jean-Christophe Eloy, CEO & President, Yole Développement
 Email eloy@yole.fr - +33 4 72 83 01 80

○ FINANCIAL SERVICES (in partnership with Woodside Capital Partners)

• Jean-Christophe Eloy, CEO & President
 Email: eloy@yole.fr - +33 4 72 83 01 80

• Ivan Donaldson, VP of Financial Market Development
 Email: ivan.donaldson@yole.fr - +1 208 850 3914

○ GENERAL

• Public Relations: leroy@yole.fr - +33 4 72 83 01 89

• Email: info@yole.fr - +33 4 72 83 01 80

Follow us on

©2018 | www.yole.fr | About Yole Développement